8. COMBINATIONS OF FUNCTIONS

One way to graph sums (differences, products, quotients) of functions is to enter \(f(x) \) in \(y_1 \), \(g(x) \) in \(y_2 \), and \(y_1+y_2 \) in \(y_3 \). You must use lower case \(y \)'s; the calculator is case sensitive. If all three functions are selected, the calculator will plot \(f(x) \), \(g(x) \), and \((f+g)(x) \). If you want to graph only the last, unselect \(y_1 \) and \(y_2 \) by using \texttt{SELCT} on the \texttt{GRAPH/y(x)=} menu.

To graph compositions of functions, say \(f\circ g \), you could just enter the algebraic expression for \(f(g(x)) \). Another way is the following:

Enter \(f(x) \) in \(y_1 \), \(g(x) \) in \(y_2 \), and \(f(y_2) \) in \(y_3 \), substituting the symbol \(y_2 \) for \(x \). You do not have to enter \(f(x) \) in \(y_1 \) unless you want to plot it.

The latter method has the advantage of respecting domains. For example, applied to \(f(x)=x^2 \) and \(g(x)=\sqrt{x} \), the calculator will graph \(y=x \) only for \(x \geq 0 \).