C. Recursively Defined Sequences

Sequences of the form $x_{n+1} = f(x_n)$ with a seed value for x_1 can be easily generated on the calculator. I will demonstrate using the example

\[\left\{ \sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \ldots \right\}, \text{ where } x_1 = \sqrt{2} \text{ and } x_{n+1} = \sqrt{2 \cdot x_n}. \]

1. Enter $\sqrt{2} \text{ ENTER}$
2. Enter $\sqrt{2 \cdot \text{ANS}}$. The calculator returns the value x_2.
3. Pressing ENTER again re-executes the command in 2 using x_2 as ANS and returns x_3. Continue pressing ENTER to get other terms until the limiting value (2) becomes apparent.

I have seen this problem in maybe a dozen textbooks and every one of them uses the number 2; why not some other number? If you assign this particular problem, you could then ask students to guess the limit of the sequence with 2 replaced by 5 (or any other positive number except 2). They usually generalize from a single example and guess 5 which is incorrect. You can demonstrate the advantage of algebra over the calculator by finding a general expression for the limit with 2 replaced by an arbitrary positive number.

To graph the sequence above, you can use the following sequence of commands:

\[
\sqrt{2} \text{ STO S ENTER}
\text{For(N,1,20,1):PtOn(N,S):} \sqrt{2 \cdot S} \text{ STO S:End:DispG}
\]

For sequences defined by $x_{n+2} = f(x_n, x_{n+1})$ with seed values for x_1 and x_2, use the following:

\[x_1 \text{ STO A:}x_2 \text{ STO B:}f(A,B) \text{ STO C:}B \text{ STO A:C STO B ENTER} \]

The calculator returns x_3, replaces x_1 by x_2 and x_2 by x_3. Continuing to press ENTER generates the sequence values. This is a bit complicated and will require some explanation, but I can't think of an easier way to do it.

For example, for the Fibonacci sequence, the commands would be:

\[1 \text{ STO A:1} \text{ STO B:A+B} \text{ STO C:B} \text{ STO A:C STO B} \]