The calculator will graph \(\int_a^x f(t) \, dt \) but the graphing is painfully slow if the tolerance setting is small. Change the tolerance setting to 1 (TOLER is 2nd/CLEAR). Graphing is still slow but tolerable. Higher tolerance settings seem to have no effect. Using \(\cos(x) \) as an example, on a blank line on the \(y(x)= \) screen, enter \(\text{fnint}(\cos t,t,0,x) \), choose the ZTRIG window and graph.

Students have trouble understanding that the definite integral above actually defines a function. Seeing it graphed may help. Another possibility is to have the students sketch a rough graph just by plotting points. A table of values could be generated without too much work using the ideas from the last section.

The above example can be repeated with 0 replaced by \(\pi/2 \) or some other number to demonstrate the role of the constant.

The calculator will also graph the derivative of the function. If the function is in \(y1 \), enter \(\text{nDer}(y1,x,x) \) in \(y2 \) and graph. Take a coffee break; this is ridiculously slow.

You can skip the graphing and find numerical derivatives. The command \(\text{nDer}(\text{fnInt}(t^2,t,0,x),x,3) \) will return 9 (\(=3^2 \)).