11. DERIVATIVES

A. Numerical Approximations

\[\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \] can be approximated using the methods of the last section.

So can \(\lim_{H \to 0} \frac{f(a+H) - f(a)}{H} \). Just assign values to \(H \) instead of to \(x \).

Unfortunately, you cannot use a lower case \(h \).

Example: Approximate \(f'(\pi/3) \) for \(f(x) = \sin x \).

I selected Float 4 on the MODE menu to round to 4 places, and I will use the list stored in \(V \) in Section 10.A.iv. On the home screen, enter

\[V \text{ STO} \cdot \ H: (\sin(\pi/3+H) - \sqrt{3}/2)/H \ \text{ ENTER} \]

The calculator returns the list:

\{.2674 .3636 .4559 .4957 .4996 .4999 .5000\}

Recall the last command using ENTRY and change \(V \) to \(-V\) to check the limit from the left.

Of course, there is no good reason other than notational conformity to use \(H \) instead of \(V \) in the expression. One could omit the \text{STO}\cdot command and substitute \(V \) for \(H \).

You can enter \(\frac{f(a+H) - f(a)}{H} \) on the \(y(x) = \) screen using a small value for \(H \) and graph. The graph will approximate the graph of \(f' \).