Problem:
Using a slope field, find the graph of a solution of the differential equation

with the initial condition y(1)=1.

Visualization:
Using Slopes (from the University of Arizona):

1. After starting up the program, you are prompted "Would you like some instructions?" Use the arrow keys to move to either Yes or No and then press .
2. If you choose Yes then read the instructions and press when you are ready to proceed.
3. Use the arrow keys to highlight Function Operations and press .
4. Use the arrow keys to highlight Create Function and press .
5. At the prompt, Enter numerator:, type
2*x^2-x .
6. At the prompt, Enter denominator:, type
1 .
7. At the prompt, Display graphics in a square region?, use arrow keys to highlight No and press .
8. At the prompt, X coordinate of left screen edge :, type
-2 .
9. At the prompt, X coordinate of right screen edge :, type
2 .
10. At the prompt, Y coordinate of bottom screen edge :, type
-1 .
11. At the prompt, Y coordinate of top screen edge :, type
3 .
12. At the prompt, Initial x value :, type
1 .
13. At the prompt, Initial y value :, type
1 .
14. Use the arrow keys to highlight Plot Slopes and press .
15. You will now see the coordinate axes.
16. Press s to see the slope field:

17. Press c to see the solution corresponding to the initial point (1,1):

Press x or y to change the coordinates of the initial point.