ADVENTURES IN 3D MODELING USING VPYTHON

Russell Herman and Gabriel Lugo
University of North Carolina Wilmington
hermanr@uncw.edu and lugo@uncw.edu

In the summer of 2008 we taught mathematical modeling to a group of high school stu-
dents as part of a month long program called Summer Ventures in Science and Mathe-
matics (http://www.summerventures.org/). The idea was to quickly introduce the students
to programming and creating simulations which not only aided in visualization, but also
could be used to gather data for further analysis. The students would then explore a re-
search topic armed with only a week introduction to mathematical modeling and software
tools. In this paper we describe the process, the main software package, VPython, and
some of the student projects that resulted'.

Mathematical Modeling

We began the course by defining and highlighting key aspects of mathematical modeling
and providing some interesting examples. We made the case that modeling is the process
of representing a real-world phenomenon as a set of mathematical equations and is used
in fields such as the natural sciences, engineering, social sciences, mathematics, and eco-
nomics. Models can be classified in many ways: linear or nonlinear, deterministic or sto-
chastic, continuous or discrete. The methods used are typically a combination of numeri-
cal computation, symbolic analysis, and visualization. The types of mathematics used
ranges from high school through advanced mathematics (Algebra, Trigonometry, Graph-
ing Functions, Calculus, Linear Algebra, Differential Equations).

Examples were provided throughout the program. These consisted of physics problems
(projectile motion, harmonic motion, waves, the physics of sports, and planetary motion),
problems in mathematics (complex numbers, random numbers, Fourier analysis, and
fractals), and biological models (population dynamics and epidemic models). We also
explored the programming of additional problems such as percolation, Monte Carlo
methods and cellular automata.

Mathematical Background

The background of the students was that typical of bright high school students from
around North Carolina. Only one had seen some calculus, most had basic algebra and ge-
ometry, and several have taken trigonometry. So, we needed to think about how get stu-
dents to solve systems of differential equations without using calculus or physics. Since
the end result would be programming a discretization of such continuous models, we only
needed simple tools, such as slopes of secant lines, to express rates of change.

" Further details can be found at http://people.uncw.edu/hermanr/SVSM.htm.

173

The afternoon of the first day we worked on the second modeling problem — exponential
population models. We introduced population models as a way to introduce the analysis
of data and doing an exponential fit to the data based on a derivation of the solution toa
discrete (difference) population model. With a little prodding, we lead students through
the derivation of a discrete model and the continuous solution as a limit (done in Maple)
as schematically shown in Figure 1. Then we used MS Excel to test the model with actual
U.S. population data. Afterwards, the logistic model was introduced and explored for sev-
eral populations in the U.S. and other countries.

DEﬁlV@TIOI:l?

Rate of Change of a Quantity = Rate in — Rate out

ip—-:bl’—tll“slil’
N

Let
Time = [0, 7] in N steps: Ar=¢/\
Pente, p=ih1,2,00N
A=A _, p ke kr k"
TA—.—AI%=>!:—1%+;\:& f;=(1+?)l’}_,=l’ﬂ=(l+‘—\f) r,
P =(l+ﬂJp' =(1+."1J- P As N gets large. Py is what?
L7 N ;
p,=[1+%) p P(1) = Pe"
& Ngletas

Figure 1: Sample Derivation of Exponential Growth

The second day students were introduced to programming with the goal of modeling pro-
2

S . . . d’r .
Jectile motion based upon an approximate solution of F=constant, which can be re-
t

. . . . dr dv
written as a system of two first order differential equations: Z=V,E=constant. of

course, they did not know that this is what they were doing. Instead, we lead them
through rates of change using difference quotients, starting from motion with uniform

P . . Ax x,. —x . .
velocities in one dimension, v, e ”“A_""’ After a simple rewriting, one has the
! !

beginning of the prediction of the motion of an object, like a ball, as x

new

= xol:l + vuw.' At
Introduction of VPython for 3D Simulations

The next step in the process was to program and visualize the motion. For this we intro-
duced the students to just enough programming to simulate the motion. We needed a

simple to use, cheap, and attention grabbing programming environment. We chose to in-
troduce them to VPython, an open source, Python-based, modeling program.

170)

At the VPython site, http://vpython.org/, the authors call it “3D Programming for Ordi-
nary Mortals”. Well, with a name like that, why not try it on students with practically no
background in physics, calculus, or programming? VPython was co-authored by David
Scherer, David Andersen, Jonathan Brandmeyer, Ruth Chabay, Ari Heitner, Ian Peters,
and Bruce Sherwood for introductory physics instruction. It was first developed while
some of the authors were at Carnegie Mellon and later used to teach physics at NC State
University. It has recently been updated to Version 5 based upon community feedback.
However, we had used the previous VPython 3.0 version.

It is relatively easy to install. The students installed it within a few minutes of using it.
One first installs Python and then VPython. Then, run the IDLE icon. In this editor, one
first types

from visual import *
On the next line type
sphere()

Then save the file (CTRL-S) as test.py and run it (FS). This brings up a sphere. Such ob-
jects like a sphere, cylinder, arrow, helix, can easily be created, resized, and moved. This
makes doing simple 3D graphics straightforward. In fact, the students were making com-
plicated objects in minutes. It is easy to change the object attributes. For the sphere, one
needs only type sphere(radius=0.5,color=color.red) to make the sphere red and change
its radius.

One can even give objects names, ball = sphere(radius=0.5,color=color.red). This al-
lows one to move the object, ball, by changing its position, which is given using vectors:

ball = sphere(pos=(0,2,0),radius=0.5,color=color.red)
ball.pos = (1,2,3)

Now we can program the ball to move on its own using the earlier result for changing
position, x,,,, = x,,, +v,,,At. First, we introduce the concept in programming that the equal

sign means “replace”. Letting x = ball.pos and vy, = ball.velocity, the new ball position is
given in terms of the old position by

ball.pos = ball.pos + ball.velocity*dt

However, we need to carry this out for several time steps. So, we then introduced looping
using the while statement and a few other subtleties which we will not go into here. A
sample of the code is shown in Figure 2. We then wanted to have the ball bounce from a
wall. It turns out that the ball in the code on the left will not “see” the wall and passes
right through it. If the ball moves too far to the right, then we can reverse its direction.
This requires an additional programming structure, conditional statements. So, we add in

170)

the loop If ball.x > wallR.x. Then what? We need to reverse direction: ball.velocity = -
ball.velocity.

m_ Al
™ P8 Pews Rn Oooww’ Wedws iag
visual imp.nt * s visual B E
ball = aphere(pose(~9$,0,0}, radiune=0.%, culor=color. rad) scong.Widih = §G0
wallR = box({pos=(t,0,01, size=(0.2,4.4}, colur=colos.green) 3cena.heighs e 400
scana.avtoscale » 0
dr - 4,5 acana.rsnge = (100,100, 100)
ball.velocity = vector(.2,0,0) acena.cantor » (0,50,0)
,,-1‘],(),();3); tloor » hox(longth=100, hoightw(.%, widthed, Solorweslor.nlue)

ball = sphere(poa={-90, 100, 0] sradiun=2, color-color.red)
ball.velocity = wactor (¥, 6,0)
kall.trail = curve(color=color yallow)

ball.pos = ball.pos + ball.velocicy*dy

<IN 0.01
1

rato(100)

ball.poos « kall.pos + ball.velocity*dt
ball.y < 2:
ball.velocity.y » ~hall.valocity.y

hall.velocity,y = hall.velsclty,y - 9.8+de
lml!.:rn“.appﬂnd(po:\-lmll.pou)

Figure 2. These are sample pieces of VPython code for constant velocity
and constant accelerated motion as described above.

We then add acceleration. We model dropping a ball that bounces on the floor. Here we
introduce free fall and average velocity. This leads to adding velocity corrections.

new velocity = old velocity + a*dt
ball.velocity = ball.velocity + ball.acceleration*dt

Thus, we have simple model for solving a system of first order equations. Of course, a
little numerical analysis is needed to say something about the accuracy. We later discuss
this in class and show that other Python packages can be imported alongside VPython in
order to do the equivalent of what expensive programs like MATLAB can do. We added
packages useful for scientific computing such as NumPy, SciPy, Matplotlib and SymPy.

In the meantime, students were encouraged to add more walls and enclose the moving
ball and allow for motion in 3D. They added more balls and soon were exploring other
examples provided on the Internet or that came with the software. We learned how to
create a mass on a spring and set it into motion. Once we had simple simulations, the ob-
Ject positions and velocities could be saved and later analyzed in other programs, such as
MS Excel. It was now up to the students to begin to think about a research project.

Student Projects

For the rest of the week the students were exposed to other models using VPython, Py-
thon, and computer algebra systems in a variety of disciplines. They then were formed
into groups and selected research topics. Some of the possible topics and the student
presentations are currently at http:/people.uncw.edu/hermanr/SVSM.htm.

Two groups explored projectile motion with drag and lift: ping pong ball and golf ball
flight. One group looked into modeling river flow with the insertion and diffusion of pol-
lutants. Another group modeled bungee Jumping. Two other groups looked into epidem-

170)

ics. One group strictly used Maple and MS Excel to analyze the bird flu data using a cou-
pled system of bird and human populations. The other group did a sophisticated analysis
of the spatial spread of epidemics in VPython, titled “Stochastic Spatial Dynamics of Epi-
demic Models”. Finally, one pair of students was so obsessed with Rubik’s cube, that
they wanted to understand how to solve the cube. So, they learned about permutation
groups, starting simple with colored balls, progressing to the rigid motions of a triangle,
and then a subgroup of the permutation of the faces of Rubik’s cube. Based upon this,
they modeled simulations of Rubik’s cube in VPython and worked out the subgroup and
verified the table entries. Some screenshots of these projects are shown below.

.
Naise o

c. Simple Basketball Game d. Polluted River Simulation

e. Png Pong Game Simulation f. A Falling Bungee Jumper

Figure 3. Screenshots of some of the VPython projects from the course.
Conclusion
We found it was easy to use VPython to get the students exploring complicated systems

in a relatively short period of time. This four week introduction to 3D Modeling and visu-
alization can also be used throughout the undergraduate mathematics curriculum.

177

