Global Warming – Should We Worry?
A Problem-based, Simulation, and Teamwork Approach
To Teaching Integrated Math & Science

by

Terry L Kiser
California State University, Chico

Introduction

Three major issues in science education are the use of educational technology, problem-based learning, and the teaching of science in an integrated format. While the use of technology in the classroom has been growing rapidly and recognition of the effectiveness of active, problem-based formats is spreading, implementation at most campuses is still piecemeal. The third issue of employing an integrated format is gaining momentum and has received national attention from professional organizations and funding agencies for the past several years. Change, however, is difficult due to the entrenched structure of single discipline-based instruction.

California State University, Chico, is considered as a leader in the 23 campus California State University system in the implementation of educational technology. What we are in the process of doing now, with the assistance of a National Science Foundation grant through the Institutional Reform of Undergraduate Education program, is enhancing the entire basic core science curriculum with educational technology using a problem-solving, computer simulation, and integrated science approach. It is our aim that early in their education students will have the opportunity to see that the sciences have many commonalities - such as, the scientific method, a need for quantifiable and verifiable data, and the use of statistics and probability. Most importantly, all the sciences require a healthy skepticism tied to the process of critical thinking. Our goal is to have student teams investigate and model complex problems involving current scientific controversies of national importance chosen specifically to require knowledge and skills drawn from many different scientific fields.

Presently, a student, whether a science major or not, receives an introduction to college-level science by taking a basic science course in one discipline, be it chemistry, biology, physics, or geoscience. It is perhaps only after several courses and years that students begin to be able to integrate knowledge across the sciences and see a more authentic process of doing science. If they only take a couple of courses, they may never see the big picture. An integrated approach to science is needed and the best way to accomplish that is for faculty from different disciplines to work in teams. It is our hope that by paving the way with a substantial development of resources and through faculty training, we can invite more faculty to jump on board, promote a cross-discipline, team teaching approach and, thereby, revitalize the core science curriculum with the latest in educational technology and pedagogy.

A Problem-based, Integrated Science Curriculum
For the past year, a team of six faculty from the College of Natural Sciences have been working on the NSF-funded development of integrated science materials employing a problem-based approach and infusing computer modeling and simulation with traditional laboratory experimentation. One of our long-term goals is to develop a library of curricular “Modules” centered on interdisciplinary scientific issues, which could be packaged into semester and yearlong integrated general education science and critical thinking courses. The NSF grant, also, has helped to fund the remodeling of a classroom into a modern and effectively designed combination class/computer laboratory. In addition, we were able to purchase and construct science equipment, which will effectively promote our underlying teamwork and hands-on approach. This semester, we are conducting faculty workshops to highlight our accomplishments and train faculty in the use of our materials and the use of equipment in the newly remodeled room.

Currently, we have completed course materials for a one-semester course based on the theme: Global Warming – Should We Worry? Global warming is an ideal “big” issue with plenty of national attention, relevant to the lives of our students, contains heavy doses of math and science drawn from numerous disciplines, and is steeped in debate over political and social side issues. Other topics under consideration and in various stages of development are origins & evolution, watersheds, wetlands, and pollution.

In the section below, we briefly discuss some of the pedagogy and student activities comprising our course on global warming.

Global Warming – Should We Worry?

In an attempt to incorporate the latest educational pedagogy and provide for effective student and program assessment, we have researched the literature on program development and course design. A brief overview of our course, including course objectives, course outline by topics, student assessment, and course evaluation, based on the work of Wiggins and McTighe in “Understanding by Design”, is given below.

First, we identified our course objectives. Then, we addressed how we would know if students have met these objectives, which formed the basis for developing a series of rubrics as assessment tools. With these two important foundations in place, we began the process of developing the student activities.

Course Objectives

In switching from a content driven to a problem-based course, considerable thought went into identifying our goals and expectations. The following three objectives illustrate our emphasis on the process of doing science more than developing a storehouse of scientific facts.

1) Students can critically discuss contemporary scientific issues.

2) Students demonstrate proper use of scientific method.

3) Students can make informed decisions involving science and society.
Course Outline

I. Global Warming – What’s The Big Deal?
An introduction to global warming with web-based research using a web site we created containing numerous links to interesting pro/con debates and various climate change organizations.

II. Modeling
An introduction to computer modeling and simulation using the software program Stella. Students will learn how to create their own models using conceptually simpler problems, such as, population growth and draining sinks.

III. Modeling Global Warming – The Experimental Connection
This is a series of components where students will begin creating a model for the global mean temperature of the surface of the earth. Their model will evolve as understanding of various science issues grows. There are numerous ties to traditional laboratory experimentation in the sub-components: Energy & Temperature, Energy Flow- Absorption and Reflection, Respiration and Photosynthesis, CO₂ Solubility, and Using Satellite Data.

IV. Science & Society
The course will culminate with a mock-Kyoto accord meeting where student teams will represent various nations or regions of the world in coming to a consensus on identifying the dangerous issues of global warming and what to do about them. Students will then be responsible for writing a news article debriefing VIP’s of the accord and defending their stance.

Student Assessment

We have created a series of rubrics to address how we would know if students have met our course objectives. The general format involves a matrix with descriptions related to categories, such as, Explanation, Interpretation, Application, etc. as they pertain to the various components and key activities. The components call for a mix of individual and team papers, team oral reports, designing experiments, team reports on creating, testing, and evaluating models, some traditional quizzes, and a portfolio.

Course Evaluation

This is an area still under development but the following are some ideas we have that directly relate to our course objectives.

Critical discussion on scientific issues: We will make an initial versus final paper comparison. At the beginning of the course, a writing assignment/questionnaire, designed to assess the student’s initial understanding of basic issues involved in global warming, will be given. This will be compared with a final summary report going into each student’s portfolio to assess growth in their ability to discuss the issues involved in global warming.
Proper use of the scientific method: We will use a pre-post test comparison along with a beginning versus final design of experiment comparison.

Making informed decisions on science and society: We will use a video tape of the Kyoto-type meeting and group paper to assess the decision making processes students incorporated in reaching their consensus.

We are currently consulting with in-house faculty whose area of expertise involves student and program assessment to add to and refine the components outlined above. We are currently in the process of learning more about the effective use of portfolios and designing an attitudes survey as another tool for course evaluation.

There are two major directions for our future work. One is to complete modules centered on other topics to help make our program more flexible and portable. Another direction is to develop a one-semester general education mathematics course aimed at non-math and non-science majors that would dovetail with our integrated science course. The primary objective of the mathematics course would be to extract and more fully cultivate the substantial mathematical threads connecting all of the components of the science course, while the science course provides the context – the “big” interdisciplinary picture. This context is what would drive the course and motivate the need for the various mathematical components, such as, making measurements, estimating error, converting units, the use of experimental data and associated understanding of some probability and statistics, and the understanding of mathematical relations involved in input-output responses from computer simulations.

Given below are some URL’s for our global warming web site, providing a link to download some of our finished Stella models, and where to download a demo version of the Stella program to run theses models.

1) **Our CSU, Chico website on Global Warming**

 http://www.csuchico.edu/~jbell/GlobalWarming/

2) **Information on Stella and free run-time versions**

 Stella Home page

 http://www.hps-inc.com

 Free run-time versions

The paper will conclude with a series of “snapshots” illustrating some of the computer modeling activities and ties to hands-on experimentation. The experiments developed for the course involve measuring the solar constant, planetary albedo, specific heat and the conversion from
energy to temperature, blackbody radiation and the Stefan-Boltzmann law, atmospheric absorption and greenhouse gases, and photosynthesis and respiration.